
 CLOCKWORK

//case-study

How air up unlocked seven

figure time-to-market savings

by leveraging total automation
By transitioning to a microservices-based
architecture and robust CI/CD pipeline, air
up drastically reduced deployment times
and enabled continuous delivery of new
features.

Introduction
air up experienced remarkable growth as it dominated the scent-flavoured drinks

market. With over 250 employees and more than 6 million customers it became

increasingly apparent that existing delivery practices and digital infrastructure were

struggling to keep pace with their success.

The heart of air up’s operations was a third-party ERP monolith. While the system

had adequately served the company during its initial growth phase, it was now

showing significant signs of strain. Performance degradation had become a pressing

over $1M
Time to

market

savings

8000
Deploys in 6

months

15m
DORA Average

Lead Time

https://air-up.com/

issue, with the system struggling to handle the increased load from expanding

operations and started to impact customers’ satisfaction. Changes were also

increasingly harder to deploy without introducing unexpected side effects and bugs.

Entering new markets or even maintaining market position became significantly more

difficult, leading air up’s decision to modernise its infrastructure and delivery

processes.

In order to address the company’s need for more scalable system and improve

delivery process, Clockwork assisted the team in adopting an Archipelago

Architecture alongside Trunk-Based Development and Continuous Deployment. This

approach was underpinned by a Shift-Left Engineering strategy, allowing for full end-

to-end testing on developer workstations and enabling 8000 deployments across 20

microservices in just six months. The solution was customised to the air up needs

through the use of shared library modules in a Monorepo, Contract Testing and

supported by Living Documentation. The software delivery process had also been

improved with use of modern XP Development Practices, ensuring both speed and

reliability.

While the transition was challenging, requiring changes in architecture and mindset,

the benefits were significant. It led to increased scalability of the platform during

peak traffic periods, improved delivery speed with new warehouse integration in US

achieved two months ahead of schedule as well as provided invaluable insights to

optimise stock levels through inventory reporting. Additionally, confidence of

integration and communication with partners was vastly improved. The transition

amounted to estimated savings of time to market and stock inventory management

of over $1M.

About air up
air up is a German startup that has found success with its innovative reusable drinks

bottle system. Founded in 2016, the company has developed a unique bottle design

that allows users to infuse their water with various fruit and vegetable “flavour pods”

to create flavoured water with no additives. This approach has resonated with

health-conscious consumers looking for an alternative to sugary sodas and juices.

Since its launch, air up has experienced rapid growth, expanding from its German

home market into other European countries. The company initially raised venture

funding capital and has recently recorded growth of its user base to over 6 million

customers. air up’s innovative product and smart marketing have enabled it to carve

out a strong position in the competitive flavoured water category.

http://localhost:1313/glossary/#archipelago-architecture
http://localhost:1313/glossary/#archipelago-architecture
http://localhost:1313/glossary/#trunk-based-development
http://localhost:1313/glossary/#continuous-deployment
http://localhost:1313/glossary/#shift-left-engineering
http://localhost:1313/glossary/#monorepo
http://localhost:1313/glossary/#contract-testing
http://localhost:1313/glossary/#living-documentation
http://localhost:1313/glossary/#xp-development-practices

Challenge
Resolving compounding performance and quality
issues
As the company ventured into new markets and broadened its product catalogue, it

became increasingly apparent that their existing digital infrastructure was struggling

to keep pace with their success. The heart of air up’s operations was a third-party
Python ERP monolith. While this system had adequately served the company during

its initial growth phase, it was now showing significant signs of strain. Performance

degradation had become a pressing issue, with the system struggling to handle the

increased load from expanding operations. This slowdown was not merely an

inconvenience; it was beginning to impact customer satisfaction and operational

efficiency.

Compounding the performance issues was a concerning lack of observability within

the system. The development team found themselves frequently flying blind, unable

to quickly identify and resolve issues as they arose. This lack of insight made it

challenging to maintain the system’s reliability and to plan for future scaling needs.

The development process itself was outdated for air up’s rapidly evolving needs. The

team operated on a branch-per-environment model, with separate branches for

development, staging, and production. This approach led to complex merge

processes and increased the risk of errors when porting code across environments.

The release cycle was bound to weekly sprints, which often felt too rigid for a

company needing to respond swiftly to market demands and operational challenges.

Testing practices were another area of concern. Unit testing was not a priority in the

development culture, and the system itself had very few tests. This lack of

comprehensive testing made it difficult to ensure reliability when making changes or

adding new features. Deployments, which could take up to an hour, were often

fraught with uncertainty. The team relied heavily on manual testing and what could

be described as a “hit and hope” deployment strategy, leading to a high-stress

environment and increased risk of issues in production.

Sector

Retail

Location

Germany

Org Size

250 employees

Project Duration

12 months

As air up continued to grow, these limitations were becoming more than just

technical hurdles; they were potential barriers to the company’s continued success.

The need for change was clear. air up required a new platform that could not only

handle their current scale but also support their ambitious plans for future growth.

They needed a system that could efficiently manage an expanding product

catalogue, integrate seamlessly with new warehouse fulfilment vendors, and provide

advanced fulfilment mechanics such as address validation and smart warehouse

routing.

Moreover, the company recognised the need for real-time inventory reporting to

optimise stock levels and streamline manufacturing processes. Integration with a

new web shop implementation was crucial for improving the customer experience.

Additionally, connecting with a robust data warehouse would enable the advanced

reporting and analytics capabilities necessary for data-driven decision-making in a

competitive market.

This context set the stage for a comprehensive overhaul of both the technical

infrastructure and the development processes at air up. The company was poised to

embark on a transformative journey, one that would not only address their immediate

technical challenges but also foster a new culture of innovation, collaboration, and

continuous improvement within their engineering team.

Solution
Monorepo Implementation
One of the fundamental decisions made to address the challenges faced by air up
was the implementation of a monorepo structure. This approach represented a

significant shift from the previous development model and was chosen for its ability

to streamline development processes, allowed for better refactorability of the code

and improve code sharing across the organisation. The monorepo strategy involved

consolidating all the air up’s codebase into a single repository, including the various

microservices, shared libraries, and support tools. This centralisation was not merely

a technical choice but a strategic one, aimed at fostering collaboration and code

reuse across the entire development team. In the previous system, code sharing was

difficult and often led to duplication across different services. With a monorepo, the

team could easily create common modules for frequently used functionalities, such

as authentication, logging, or data access patterns. These shared libraries could then

be utilised across all services, ensuring consistency and reducing redundancy.

Another significant advantage of the monorepo was its support for atomic commits

across multiple services. When a change affected multiple parts of the system,

developers could make these changes in a single commit, ensuring that all related

modifications were applied simultaneously. This greatly reduced the risk of

inconsistencies that could arise from changes being applied to different services at

different times. From a developer experience perspective, the monorepo made it

easier for team members to understand the entire system. New developers could

clone a single repository and have access to the entire codebase, making onboarding

smoother and encouraging a holistic understanding of the platform.

The monorepo also simplified the continuous integration processes and aligned well

with air up’s move towards a microservices architecture. With all code in one
repository, it became easier to set up comprehensive CI/CD pipelines that could

build, test, and deploy all services together. This was crucial for implementing the

Trunk-Based Development model and achieving the high frequency of deployments

that air up was aiming for.

Trunk-Based Development
Transitioning to Trunk-Based Development was a crucial step in air up’s
transformation of their development practices. This approach represented a

significant departure from their previous branch-per-environment model and was

integral to achieving their goals of increased deployment frequency and improved

code quality. Utilising Trunk-Based Development eliminated the complex merging

processes that were previously a source of delays and errors. It also fostered a

culture of continuous integration, where code changes were immediately integrated

with the work of other developers.

To support this model, the team heavily invested in automated testing. Each commit

triggered a comprehensive suite of tests, including unit tests, integration tests, and

end-to-end tests. This extensive testing provided developers with the confidence to

push changes directly to the main branch, knowing that issues would be caught

quickly.

The adoption of Trunk-Based Development also necessitated a shift in how features

were developed. The team implemented feature flags, allowing new functionality to

be deployed to production in a dormant state and activated when ready. This

approach enabled continuous deployment while maintaining control over feature

releases.

Archipelago Architecture

In designing the new system architecture for air up, the Clockwork team adopted an

Archipelago Architecture, a nuanced take on microservices architecture. This model

was chosen to balance the benefits of microservices with the need for cohesive

domain-specific functionalities. The Archipelago Architecture organised services into

“bubbles” - collections of closely related modules that shared a common database

and were deployed as a unit. Each bubble typically consisted of one or more HTTP

services or queue-driven workers, all centred around a shared domain layer core.

This approach allowed for a logical grouping of functionalities while maintaining the

flexibility and scalability of a distributed system. At the heart of each bubble was a

hexagonal core, implementing the domain logic. This core was agnostic to the

delivery mechanism, whether it was an HTTP API or a message queue worker.

Separation of concerns ensured that the business logic remained clean and

independent of infrastructure details.

The Archipelago Architecture provided several advantages. It allowed for

independent scaling and deployment of different functional areas of the system. For

instance, the order processing bubble could be scaled differently from the inventory

management bubble, depending on load and business needs. At the same time, it

avoided the extreme granularity and potential complexity of a pure microservices

approach. This architecture also facilitated better data consistency within each

bubble, as related modules shared a database. However, inter-bubble communication

was designed to be asynchronous and resilient, respecting the boundaries between

different domains of the business.

By adopting this Archipelago Architecture, air up created a system that was both

modular and cohesive, setting the stage for improved scalability, maintainability, and

alignment with business domains.

Continuous Integration
air up’s new Continuous Integration �CI� system was a critical component in their

development transformation. Built to support the monorepo structure and Trunk-

Based Development, it enabled rapid feedback and maintained code quality across

the entire codebase.

The CI pipeline was triggered automatically with each commit to the main branch. It

began with a build process that compiled all affected services and their

dependencies within the monorepo. This ensured that changes in shared libraries or

interdependent services were immediately validated. Following the build, a

comprehensive testing suite was executed. This included unit tests for individual

components, integration tests for service interactions, and end-to-end tests

simulating real-world scenarios. The team also implemented contract tests to verify

the integrity of service interfaces.

Performance tests were included to catch any regressions in system efficiency. To

manage the complexity of the monorepo, the CI system employed intelligent caching

and parallelisation strategies. This allowed it to focus on affected areas of the

codebase, maintaining quick feedback cycles despite the growing repository size.

The CI dashboard provided real-time visibility into build and test statuses, allowing

developers to quickly identify and address issues.

This rapid feedback loop was crucial in maintaining the high velocity of changes

while ensuring system stability.

Shift-Left Practices
air up embraced a comprehensive Shift-Left Practices, moving critical practices

earlier in the development lifecycle. This strategy significantly improved code quality

and reduced issues in production. Observability was implemented from the outset of

development. Engineers integrated logging, metrics, and distributed tracing into their

services from the beginning. This early focus on observability allowed for better

debugging during development and provided crucial insights into system behaviour

in production.

End-to-end testing was integrated into the local development environment.

Engineers could run full system tests on their workstations, simulating production-

like scenarios. This capability allowed for early detection of integration issues and

ensured that new features worked correctly within the broader system context.

Security considerations were also shifted left. The team adopted a “security as code”

approach, incorporating security best practices into shared libraries and

infrastructure-as-code templates. Automated tests were integrated into the CI

pipeline, identifying potential inconsistencies in security stack.

Performance testing was conducted throughout the development process, rather

than just before release. This allowed for early identification and resolution of

performance bottlenecks.

By adopting these Shift-Left Practices, air up significantly reduced the number of

issues reaching production, improved system reliability, and increased the team’s

confidence in their ability to deliver high-quality software rapidly.

Results
Time-to-Market and Inventory Optimisation Savings
of over $1 Million
The transformation of air up’s infrastructure and processes resulted in substantial

financial savings, particularly in terms of time-to-market and inventory optimisation,

amounting to estimated over $1 million. These savings were not just a boon to the

company’s bottom line; they directly translated into enhanced customer value. By

streamlining the supply chain and improving inventory management through real-

time reporting, air up was able to ensure that products were always available when

customers wanted them. This optimisation reduced the occurrence of stock

oversells, which could frustrate customers and lead them to seek alternatives.

Additionally, the improved efficiency in bringing new products to market meant that

customers had access to the latest offerings much sooner than before, allowing them

to enjoy new flavors and innovations without delay. The financial savings also

enabled air up to reinvest in areas that directly benefited customers, such as

expanding product lines, enhancing customer service, or offering more competitive

pricing. By passing on the benefits of these savings to customers, air up
strengthened its market position and further solidified its reputation as a customer-

focused brand that delivers both quality and value.

Enhanced System Reliability and Observability
The transformation of air up’s digital infrastructure also led to significant

improvements in system reliability and observability, which played a crucial role in

enhancing customer value. The legacy system suffered from performance issues and

lacked robust observability tools, leading to frequent downtimes and a subpar

customer experience.

However, with the introduction of standardised observability tools, such as

structured logging, distributed tracing, and real-time monitoring, air up was able to

achieve a much higher level of system reliability. These tools allowed the

development and operations teams to proactively monitor the system, quickly

identify and address issues, and ensure that the platform remained stable even

during peak traffic periods. For customers, this translated into a more reliable service

with fewer interruptions, ensuring that they could access air up’s products and
services whenever they needed them. The enhanced observability also allowed air

up to optimise system performance continuously, leading to faster load times and a

more responsive user interface, further improving the customer experience.

By investing in reliability and observability, air up demonstrated its commitment to

providing a high-quality, dependable service that customers could trust, which is

essential for building long-term customer loyalty and satisfaction.

8,000 Deployments Across 20 Services in 6 Months
The ability to achieve 8,000 deployments across 20 services within just six months

stands as a testament to air up’s transformation into a truly agile and customer-

centric organisation. This remarkable feat was made possible through the adoption

of Trunk-Based Development and Continuous Integration practices, which allowed

the company to confidently and safely push updates to production with every

commit. For customers, this meant that their feedback, suggestions, and needs could

be addressed rapidly, leading to a platform that was continually evolving to better

serve them. The high frequency of deployments enabled air up to roll out new

features, performance enhancements, and bug fixes almost in real-time, significantly

improving the overall user experience.

The agility demonstrated by these rapid deployments also ensured that air up could

quickly adapt to changing market conditions, introduce new products, or respond to

emerging customer trends without delay. This responsiveness not only increased

customer satisfaction but also helped build trust and loyalty, as customers felt heard

and valued. The ability to frequently update and improve the platform also reduced

the risk of large-scale failures, as issues could be identified and resolved

incrementally, further enhancing the reliability and stability of the service provided to

customers.

Improved Development Velocity
The overhaul of air up’s development processes led to a significant improvement in

development velocity, which had a profound impact on customer satisfaction and

experience. With the adoption of Trunk-Based Development, Continuous Integration,

and modern ensemble programming practices, the development team was able to

work more efficiently and effectively. This increased velocity meant that new

features, improvements, and fixes could be developed and deployed much faster

than under the old system. For customers, this meant that their needs and feedback

could be addressed more quickly, leading to a platform that was always up-to-date

with the latest enhancements.

The faster development cycle also allowed air up to stay ahead of competitors by

rapidly innovating and introducing new products and features that met the evolving

demands of the market. This agility in development ensured that customers

consistently received a service that was cutting-edge and tailored to their

preferences, enhancing their overall experience. Moreover, the increased

development velocity reduced the time taken to fix any issues, ensuring that

customers faced minimal disruptions and could enjoy a smooth, reliable service. By

prioritising speed and efficiency in development, air up was able to deliver more

value to its customers in less time, reinforcing its commitment to excellence and

customer satisfaction.

Conclusion
Clockwork’s assistance in the comprehensive transformation of air up’s digital
infrastructure and development processes not only resolved critical performance

issues but also positioned the company for sustained growth and innovation. By

embracing a modern architecture and quality-prioritising XP development practices,

the engineering team has significantly improved its operational efficiency, reduced

time to market, and enhanced overall system reliability.

"We chose Clockwork as a partner to drive

forward a technically challenging, mission-

critical initiative and 'up our game' in the
process. Our shared mindset and commitment

to engineering excellence have turned out to be

a great match, and I look forward to the

opportunity to work together again in the

future."

� Patric Fornasier, CTO, air up

Read more Clockwork case studies

https://clockwork.ing/case-study

Choose technology
professionals not
technology
pretenders

Clockwork is an invite-only network of world-class independent

technology consultants who help companies to deliver without the
hefty markup of traditional consulting firms.

https://clockwork.ing

https://clockwork.ing/

