
 CLOCKWORK

Clockwork Glossary

Throughout the Clockwork site content, we use terms to identify

specialist concepts and ideas which may not be familiar to all

readers. This glossary is designed to help briefly explain the

terminology in the context of the services provided by Clockwork

members.

Architecture Decision Record 

A document that captures the important architectural decisions

made during the development of a software system. It provides

context, rationale, and consequences of each decision, helping

teams understand the system's design and evolution. ADRs serve

as a valuable reference for future development, enabling teams to

learn from past decisions and maintain consistency across projects.

Archipelago Architecture 

A hybrid approach between monolithic and microservices

architectures where each service manages a substantial domain but

consists of multiple independent deployment units. These units can

scale independently based on different metrics, while sharing a

codebase and allowing direct data access without inter-service

communication. Each service owns its data and is responsible for its

infrastructure, combining scalability and flexibility with reduced

complexity in communication.

Backoffice Gateway
A Backoffice Gateway is a centralised API proxy service which is

deployed as a part of the support systems in an organisation. It

provides a single interface through which engineering and support

teams can interact with deployed services to access their live data,

https://adr.github.io/
https://adr.github.io/
https://adr.github.io/
https://daily.dev/blog/exploring-the-archipelago-architecture
https://daily.dev/blog/exploring-the-archipelago-architecture
https://daily.dev/blog/exploring-the-archipelago-architecture


perform administrative tasks, and manage configurations. The

Gateway is generally secured by a centralised authentication and

authorisation system providing RBAC and access to the API is fully

audited for traceability, compliance and security purposes.

Continuous Deployment 
A software development practice where code changes are

automatically built, tested, and deployed to production without

manual intervention. After passing all automated tests, updates are

immediately released to users, ensuring frequent and reliable

software delivery. Continuous Deployment reduces the time

between development and release, allowing teams to quickly

respond to feedback and improve features. It relies on strong

automation, monitoring, and testing to ensure code quality and

system stability.

Contract Testing 

A type of software testing that ensures the interaction between

software interfaces (such as APIs or microservices) conforms to a

defined contract. The contract specifies the expected input and

output for a service, and contract tests validate that both the

provider (service) and consumer (client) adhere to these

expectations. This helps prevent integration issues by verifying that

changes in one service do not break dependencies, improving

reliability and communication between services in distributed

systems.

Conway's Law 

Conway's law describes the link between communication structure

of organizations and the systems they design. It is named after the

computer programmer Melvin Conway, who introduced the idea in

1967.

Event Storming 

Event Storming is a collaborative workshop technique used to

explore and model complex business processes or software

systems. It focuses on identifying key domain events—things that

happen in the system. Participants from various roles contribute

https://www.agilealliance.org/glossary/continuous-deployment/
https://www.agilealliance.org/glossary/continuous-deployment/
https://www.agilealliance.org/glossary/continuous-deployment/
https://www.testingmind.com/contract-testing-an-introduction-and-guide
https://www.testingmind.com/contract-testing-an-introduction-and-guide
https://www.testingmind.com/contract-testing-an-introduction-and-guide
https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Event_storming
https://en.wikipedia.org/wiki/Event_storming
https://en.wikipedia.org/wiki/Event_storming


their insights, mapping out events, actors, and workflows. This

visual and interactive approach helps uncover knowledge gaps,

align understanding, and improve communication among

stakeholders, driving more effective domain-driven design.

Flow 

Engineering Flow refers to the seamless, uninterrupted progress of

software development, where engineers can work efficiently

without delays, distractions, or bottlenecks. It encompasses

optimized processes, tooling, and collaboration, allowing developers

to focus on delivering value with minimal friction. Achieving flow

involves automating repetitive tasks, ensuring clear communication,

and reducing context switching, ultimately leading to faster, higher-

quality output and greater team productivity.

Hexagonal Architecture 

Also known as Ports and Adapters, Hexagonal a software design

pattern that emphasizes separation of concerns by organizing code

into loosely coupled components. It was introduced by Alistair

Cockburn to make applications more maintainable, flexible, and

testable.

Living Documentation 

Dynamic and continuously updated form of documentation that

reflects the current state of a software system, including its design,

requirements, and implementation. Unlike traditional static

documentation that can become outdated as the software evolves,

living documentation is kept in sync with the system, typically

through automated processes. It evolves alongside the codebase,

ensuring it remains relevant, accurate, and useful to developers,

stakeholders, and testers.

Mikado Method
The Mikado Method gets its name from the children's game of pick-

up sticks. It provides a simple, iterative framework for breaking

down complex changes to software code. At its core, you start by

defining a goal, trying one change, and noting how that change

causes other failures

https://positivepsychology.com/mihaly-csikszentmihalyi-father-of-flow/
https://positivepsychology.com/mihaly-csikszentmihalyi-father-of-flow/
https://positivepsychology.com/mihaly-csikszentmihalyi-father-of-flow/
https://en.wikipedia.org/wiki/Hexagonal_architecture_%28software%29
https://en.wikipedia.org/wiki/Hexagonal_architecture_%28software%29
https://en.wikipedia.org/wiki/Hexagonal_architecture_%28software%29
https://bluefruit.co.uk/processes/why-need-living-documentationsoftware/
https://bluefruit.co.uk/processes/why-need-living-documentationsoftware/
https://bluefruit.co.uk/processes/why-need-living-documentationsoftware/


Monorepo 

A software development strategy where all code for multiple

projects, services, or components is stored in a single shared

repository. This approach simplifies code management, allows for

shared dependencies, ensures consistency, and enables easier

cross-team collaboration. In a monorepo, teams can work on

different parts of the system while maintaining visibility and control

over the entire codebase. However, it requires careful tooling and

version control to manage scalability and complexity as the

codebase grows.

Shift Left Engineering 

A software development practice that emphasises addressing

quality, security, and performance concerns early in the

development process. By "shifting left," these tasks, typically

handled later in the workflow, are integrated into the earlier stages,

such as design, coding, and testing. This proactive approach aims

to identify and resolve issues sooner, reducing defects, improving

efficiency, and lowering costs associated with late-stage fixes. It

promotes collaboration between development, QA, and security

teams throughout the development lifecycle.

Strangler Pattern 

A software development and modernization strategy that involves

incrementally replacing or refactoring parts of an existing legacy

system by gradually building a new system around it. The term was

inspired by the strangler fig plant, which grows around a tree, slowly

replacing it over time..

Trunk Based Development 
Trunk-Based Development is a software development practice

where all developers integrate their work frequently into a shared

main branch. This approach minimises the complexity of merging

long-lived branches, encourages continuous integration, and

enables rapid feedback, ensuring that the codebase remains stable

and deployable at all times.

XP Development Practices 

https://monorepo.tools/
https://monorepo.tools/
https://monorepo.tools/
https://medium.com/newday-technology/shift-left-engineering-175a4bcc89ce
https://medium.com/newday-technology/shift-left-engineering-175a4bcc89ce
https://medium.com/newday-technology/shift-left-engineering-175a4bcc89ce
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://www.agilealliance.org/glossary/xp
https://www.agilealliance.org/glossary/xp
https://www.agilealliance.org/glossary/xp


A set of software development practices aimed at improving

software quality and responsiveness to customer requirements.

Core practices include pair programming, test-driven development

(TDD), continuous integration, small releases, and frequent

customer feedback. XP encourages a high level of communication

and collaboration between team members and customers,

emphasising simplicity and adaptability. Its goal is to deliver high-

quality software while responding to changing needs and fostering

a sustainable pace of development.



Choose technology
professionals not
technology
pretenders

Clockwork is an invite-only network of world-class independent

technology consultants who help companies to deliver without the
hefty markup of traditional consulting firms.

https://clockwork.ing

https://clockwork.ing/

